Chromosome segregation occurs by microtubule pushing in oocytes
نویسندگان
چکیده
منابع مشابه
Chromosome Segregation: Pushing Plasmids Apart
The ParM ATPase from Escherichia coli plasmid R1 assembles into F-actin-like filaments which appear to push replicated copies of the plasmid to opposite ends of the cell, ensuring partitioning into daughter cells. Might bacterial chromosomes use a similar mitotic strategy for segregation?
متن کاملGoing mobile: microtubule motors and chromosome segregation.
Proper chromosome segregation in eukaryotes depends upon the mitotic and meiotic spindles, which assemble at the time of cell division and then disassemble upon its completion. These spindles are composed in large part of microtubules, which either generate force by controlled polymerization and depolymerization or transduce force generated by molecular microtubule motors. In this review, we di...
متن کاملKinetochore-independent chromosome segregation driven by lateral microtubule bundles
During cell division, chromosomes attach to spindle microtubules at sites called kinetochores, and force generated at the kinetochore-microtubule interface is the main driver of chromosome movement. Surprisingly, kinetochores are not required for chromosome segregation on acentrosomal spindles in Caenorhabditis elegans oocytes, but the mechanism driving chromosomes apart in their absence is not...
متن کاملInhibition of ectopic microtubule assembly by the kinesin-13 KLP-7 prevents chromosome segregation and cytokinesis defects in oocytes.
In most species, oocytes lack centrosomes. Accurate meiotic spindle assembly and chromosome segregation - essential to prevent miscarriage or developmental defects - thus occur through atypical mechanisms that are not well characterized. Using quantitative in vitro and in vivo functional assays in the C. elegans oocyte, we provide novel evidence that the kinesin-13 KLP-7 promotes destabilizatio...
متن کاملHuman oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes.
Aneuploidy in human eggs is the leading cause of pregnancy loss and several genetic disorders such as Down syndrome. Most aneuploidy results from chromosome segregation errors during the meiotic divisions of an oocyte, the egg's progenitor cell. The basis for particularly error-prone chromosome segregation in human oocytes is not known. We analyzed meiosis in more than 100 live human oocytes an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2017
ISSN: 2041-1723
DOI: 10.1038/s41467-017-01539-8